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Abstract Wavelet packet transform is an effective texture analysis approach by sub-band
filtering. Different texture patterns have distinctive responses to the sub-bands of wavelet
packets. The responses are valuable for texture description. Utilizing all the responses of the
sub-bands of different resolutions can improve texture pattern discrimination power. In this
paper, effective texture descriptors based on hierarchical wavelet packet (HWVP) transform
are proposed. The subtle sub-bands of wavelet packet transform improve the discrimination
power of HWVP descriptors for the images in different categories. Scene categorization
performances of the HWVP descriptors under various decomposition levels and wavelet bases
are discussed. Performances of HWVP descriptors of global and local images with different
partition patterns are also analyzed. The advantages of HWVP descriptors attribute to the
following two aspects. Firstly sub-band filtering is helpful for improving the discrimination
power of HWVP descriptors to capture the subtle differences of texture patterns. Secondly
hierarchical feature representation makes the HWVP descriptors robust to resolution variations.
Comparisons are made with some existing robust descriptors on scene categorization and
semantic concept retrieval. Experimental results on the widely used OT, Scene-13, Sport Event,
and TRECVID 2007 datasets show the effectiveness of the proposed HWVP descriptors.

Keywords Scene categorization . Wavelet packet . TRECVID . Concept retrieval . SVM

1 Introduction

Image sharing websites can easily gather huge amount of images by worldwide users.
Usually text based image retrieval (TBIR) [30] and content-based image retrieval (CBIR)
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[4, 32, 41] can be utilized for users to access the image sharing websites. TBIR is performed
by matching the query texts and the auxiliary descriptive texts of the images [30]. Image
searching performance is inevitably influenced by the subjectivity, in-completeness and ambi-
guity of the user annotated texts. CBIR is carried by measuring the similarities of the low level
visual features. Due to the semantic gaps, the performances of TBIR and CBIR are far from
satisfactory. Textural, visual features, multimodal internet source information [4] and users’
relevant feedbacks [32] are often fused to bridge the semantic gaps. There are two important
ways to utilized by researchers. The first one is focused on effective feature representation and
the other is on learning robust models. Usually, learning a high-performance classifier is very
difficult than a set of weak classifiers. Thus, multi-model fusion based approaches often
adopted to minimize the semantic gaps in image retrieval [3, 4, 25, 32, 39, 41]. In this paper,
we focus on the first problem by proposing effective feature descriptors.

How to extract robust and effective features are very important for image representation.
Recently, SIFT feature is proved to be very effective to represent scale and transform invariant
features [20, 21]. It is effective to extract local feature by detecting scale and transform invariant
feature points. Thus the image feature is represented by the sparse feature points. Each feature
point is expressed by a 128-dimensional directional edge histogram of a block with its sizes
scale-related. SIFT is very efficient in representing images with salient structures. However, for
complex image the sparse characteristics cannot be guaranteed. Thus the computational cost is
very high. Most importantly the salient features are contaminated by the large number of un-
important points. Thus, in this paper, we represent image feature by the responses of the image
to a bank of filters to improve the feature discriminative power. Each filter has certain localized
characteristics. Different objects or texture patterns have distinct response to the filters. These
are important for object categorization [29]. To improve the discrimination power of feature
descriptors, an image is filtered by a set of multi-resolution and multi-direction filters, which
aims at decomposing different object into different sub-band of filters.

The main contributions of this paper are as follows: 1) in terms of the fact that different
objects or texture patterns have different responses to the multi-resolution and multi-
direction filters, we propose to improve feature discrimination power by multi-bands
filtering. 2) Hierarchical feature representation approach collects the responses of the objects
to the multi-resolution and multi-direction filters. It discloses the object characteristics from
multi-resolutions and directions. 3) Systematically analyzed the relationship of transform
kernels of wavelet packets and localized texture pattern, which is useful for transform kernel
selection. 4) The impacts of wavelet packet bases, wavelet transform levels, and global/local
representations of HWVP descriptors are systematically analyzed which providing some
guidelines for descriptors selection. Comprehensive comparisons are made for HWVP
descriptors with PHOG [2], GIST [34] and SPM [16] in the applications of scene catego-
rization and semantic concept retrieval.

The rest of this paper is organized as follows. In Section 2, related works on scene
categorization are briefly reviewed. In Section 3 the proposed HWVP are illustrated in
detail. Applications of HWVP descriptors based scene categorization and semantic concept
retrieval are given in Section 4. The test datasets are given in Section 5. Experimental results
and discussions are given in Section 6. And finally conclusions are drawn in Section 7.

2 Related works

Scene categorization is one of the promising ways to bridge the semantic gaps in image
retrieval [41]. Bag-of-Words (BOW) based scene categorization and semantic concept
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retrieval approaches have been paid much attention by many researches [12, 18, 35, 37].
BOW models such as the probabilistic latent semantic analysis (pLSA) and latent Dirichlet
allocation have been widely adopted [1, 12, 32, 41]. These approaches model scenes as
geometric-free structures, which are represented by the spatial constraints of local patches.
The BOW based approaches are robust to the illumination, occlusion, and scale variations.
Probabilities of co-occurrence of visual words are also utilized in the BOW based scene
categorization [35, 37].

Discriminative part-based models [13, 26] are effective in representing scenes with
rigorous geometric structures by modeling the relationships between different parts. Usually
each image is represented by a set of local patches. Each patch is represented by local
descriptors which are robust to illumination, scale, orientation and transform variations [20].
In [18] and [8], the local patches of an image are assumed to be independent from each other.
This assumption simplifies the computations for the ignorance of the spatial co-occurrences
and dependences of local patches. However, one of the shortcomings of BOW models is that
objects with different appearances may have similar statistics of visual words which tend to
be confused during classification. Thus, some approaches model the co-occurrences,
dependences or linkages of the salient parts for improving scene categorization perform-
ances [35]. Probabilities of co-occurrence of visual words are also taken into consideration
in the training of BOW models [35, 37]. Despite of using the co-occurrences, the spatial
relationships of the local patches can be modeled [6, 31, 36, 37]. Hierarchical Dirichlet
process (HDP) is a nonparametric Bayesian model that infers latent themes from the training
samples under the assumption that a hierarchical structure in different groups shares the
same themes [33]. Extensions of the HDP have been proposed by modeling the relative
spatial locations of local patches [31] and using dependent hierarchical Dirichlet process
(DHDP) [35]. The DHDP is performed by introducing a linkage structure over the latent
themes to encode the dependencies of the patches. The linkage enforces the semantic
connections among the patches by facilitating better clustering of the themes. A visual
language modeling method is utilized to incorporate the spatial context of the local appear-
ance features into statistical language model [36]. The visual language models capture both
co-occurrence and spatial proximity of local image features.

Statistical learning based methods are often utilized to improve object categorization
performance by discovering the salient structures of objects [19]. Hence, the local appear-
ance, shape and texture information are usually fused by generative and discriminative
models to improve object categorization performances [3, 19, 39]. The spatial dependency
between neighboring patches is modeled by a two-dimensional multi-resolution hidden
Markov model [19]. Markov random fields [15] and conditional random fields [27] are
adopted to model the dependencies of local patches. Statistical learning models maximize
contextual constraints over the object labels and reduce the ambiguities during object
categorization [27]. A generative model is utilized to determine object categories and carry
out object segmentation in a unified framework [6]. Zhang et al. utilize support vector
machines (SVM) classifiers to integrate BOW features for image classification [39]. Pyramid
histogram of oriented gradients (PHOG) is good at representing the shapes and spatial
layouts of objects [2]. SVM classifiers with spatial pyramid kernels are utilized to improve
the object classification performance [2].

Except the BOW models, the spatial pyramids of local appearance and shape can
capture the salient structures of objects, too [2, 16]. The effectiveness of the spatial
pyramids has been shown in image categorization [2, 16, 23]. Pyramid histogram of
oriented gradients (PHOG) is good at representing the shape information and spatial
layouts of objects [2]. The spatial layout is obtained by partitioning an image into
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non-overlapping grids with multiple resolutions. Local shape information of a grid is
represented by a histogram of oriented gradients (HOG). PHOG descriptor of the
image is a concatenation of all the HOG vectors over the grids at all the resolutions.
Spatial pyramid matching descriptor (SPM) is also very effective [16]. In SPM visual
vocabulary histogram in spatial pyramid domain is constructed. GIST feature is very
effective, because localized Gabor transforms are carried out for each grid [34]. To
speed up the computation, firstly each image is resized into 128×128 pixels. Second-
ly, the image partitioned into 4×4 grids and each grid is decomposed by a bank of
multi-scale oriented filters [34].

Different scenes have salient structures, shapes and texture patterns which can be
utilized for their categorization [24, 34]. The local appearances [39, 40] and shape
information [3] have been shown their effectiveness in scene classification. However,
texture information often plays assistant roles [3, 28, 38]. Different scenes usually
have distinctive texture patterns. While image in the same category may have different
visual appearances and arbitrary shapes, and images in different categories may have
similar appearances and shapes. Sometimes texture patterns are the most discrimina-
tive. Different scenes have distinctive responses to different filters. Features repre-
sented in multi-resolution transform domain can improve their discriminative power.
Features extracted in hierarchical wavelet packet transform domain inherit the advan-
tages of multi-resolution transform and spatial pyramid representation [9, 24]. This
paper is extended from our previous version [24]. The motivations of the multi-
resolution and multi-direction filters valuable for scene categorization and retrieval
are analyzed. More experimental results are given which is helpful to show the
effectiveness of the HWVP descriptors. More discussions for the proposed HWVP
descriptors are provided, which provide a guideline for selecting appropriate descriptor
for scene categorization and semantic concept retrieval.

3 The proposed hierarchical wavelet packet texture descriptors

Wavelet packet analysis has been successfully used for data compression, texture classifi-
cation [14] and face recognition [11]. Wavelet packet decomposition is performed by
filtering the original signal with a set of sub-band filters. Images of different categories
have different properties to the wavelet packet filters.

3.1 Wavelet packet transform

Wavelet packets consist of orthonormal and compactly supported wavelets. Wavelet
packets represent a generalization of multi-resolution decomposition. Wavelet packets
comprise the entire family of sub-band tree decompositions which permit the choice
of any decomposition topological structures [14]. Figure 1a–d show a three level
wavelet packet transform for an one dimensional (1-D) signal S with four different
decomposition trees. Figure 1a is a regular wavelet packet tree. Figure 1b and c are
two arbitrary wavelet packet trees. Figure 1d is a wavelet tree. Only the leftmost
nodes (low-frequency sub-bands) have two children. In wavelet packet tree, the parent
nodes also have two children for the nodes if the corresponding sub-bands are further
decomposed. Wavelet packet transform constructs a tree-structured and multi-band
extension of the wavelet transform. Wavelet packets are described by the collection
of functions {Wi(x)|i ∊ Z+} as follows:
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where s and t denote the scale and translation indexes, W0(x) 0 ϕ(x), W1(x) 0 ψ(x), ϕ(x) is a
scaling function and ψ(x) is a basic wavelet. hk and gk are the low-pass and high-pass filters.
The basis functions are obtained by changing scale and translation. The inverse relationship
between wavelet packets of different scales is as follow:
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3.2 Wavelet packet transform for 2-D image

The extension of wavelet packet transform from 1-D signal to 2-D image is straight
forward by using separable 2-D wavelet packets. Generally, a low-pass filter (denoted
H) and a high-pass filter (denoted G) are used. The convolutions of original image
with the low pass filter results in an approximation and the convolutions with the
high-pass filter in specific directions result in details [11]. In wavelet packet trans-
form, the approximation and the details are further split into a second level of
approximation and details respectively. For an L-level decomposition, the 2-D
wavelet transform is carried out as follows:

FAA
L ¼ Hx � Hy � FL�1ð Þ#2

� �
#2

ð4Þ

FAD
L ¼ Hx � Gy � FL�1ð Þ#2

� �
#2

ð5Þ

FDA
L ¼ Gx � Hy � FL�1ð Þ#2

� �
#2

ð6Þ

FDD
L ¼ Gx � Gy � FL�1ð Þ#2

� �
#2

ð7Þ

where* denotes the convolution operator, ↓2denotes sub-sampling along the rows (or
columns) and FL-1 represents one of the sub-bands at level (L-1), Hx and Hy denote the
separated low-pass filters of H in x- and y- directions respectively, Gx and Gy denote the
separated high-pass filters of G in x- and y- directions respectively. F0 is the original image.
FAA
L is obtained by low pass filtering with sub-band image FL-1. The details FAD

L , FDA
L and

FDD
L are obtained by band-pass filtering in vertical, horizontal and diagonal sub-bands

respectively.
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3.3 Hierarchical wavelet packet texture descriptors

By hierarchical wavelet packet decomposition, the original image F0 0 I(x, y) is thus
represented by a complete set of sub-band images. There are 4L sub-band images at level
L of the regular wavelet decomposition tree topology as shown in Fig. 1a. Figure 2 shows
the sub-band of the regular wavelet packet transform under decomposition depth L00, 1 and
2 respectively. The energy and its variations of all the sub-bands are collected and used for
feature description. Hereinafter, we call the sub-band of the top-left corner of a decompo-
sition level as approximation and the others as details. There are three and 15 details for
wavelet packet transform under L01 and L02 as shown in Fig. 2b and c respectively.

In this paper, the mean and standard deviation of each sub-band are used for texture
descriptions. Let μl

b and σl
b denote the mean and standard deviation of a sub-band imageWl

b

under a specified decomposition level l respectively, which are calculated as follows.

μl
b ¼ 1

S�T

PS
s¼1

PT
t¼1

Wl
b s; tð Þ�� ��; l ¼ 0; � � � ; L ; b ¼ 1; � � � ; 4l ð8Þ

σl
b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S�T

PS
s¼1

PT
t¼1

Wl
b s; tð Þ�� ��� μl

b

� �2s
; l ¼ 0; � � � ; L ; b ¼ 1; � � � ; 4l ð9Þ

where Wl
b s; tð Þ is the coefficient of the coordinate (s,t) of the b-th sub-band of the l-th level,

S and T are the height and width of the sub-band image Wl
b .

We denote the texture feature of each level l as xl ¼ μl
1;σ

l
1; � � � ;μl

4l ;σ
l
4l

� �
regular

wavelet tree topology [24]. Four different HWVP are used and compared in this paper: 1)
texture information of the sub-bands of the last level (denoted WVPK), 2) texture informa-
tion of the details of WVPK (denoted NoDC), 3) texture information of all the details of the
decomposition level l01,⋯, L (denoted HIGH), 4) texture information of all the sub-bands
of the decomposition level l00, 1,⋯, L (denoted HWVP). Let XWVPK(L), XNoDC(L),
XHIGH(L) and XHWVP(L) denote the hierarchical wavelet texture descriptors of WVPK,
NoDC, HIGH and HWVP at decomposition level L. The corresponding dimensions and
descriptions of NoDC, WVPK, HIGH and HWVP under different decomposition levels are
shown in Table 1 respectively. For example, at the decomposition level L04, the dimensions
of the texture descriptors WVPK, NoDC, HIGH and HWVP are 512, 510, 672 and 682
respectively.
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(a)  (b) (c) (d)

Fig. 1 Four 1-D wavelet packet trees under decomposition depth L. a regular wavelet packet tree, b and c
arbitrary wavelet packet tree, d wavelet tree. S is a 1-D signal, h and g are low-pass and high-pass filters
respectively
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3.4 Local HWVP descriptors

The local texture descriptors can capture the salient texture information and can decrease the
influence of complex background. In this paper local and global HWVP are compared in
scene categorization. Texture descriptors of four partitioning patterns are compared. The four
patterns are Global, Local4, Local5 and Local9 which are shown in Fig. 3a–d respectively.
In Local4 each image is equally partitioned into 2×2 grids. Local5 consists of Local4 and a

(a) Original color image(L=0)

(b) wavelet packet transform under L=1

(c) wavelet packet transform under L=2 

Fig. 2 Wavelet packet decomposition for an image under decomposition level L00, L01 and L02. a Original
color image(L00). b wavelet packet transform under L01. c wavelet packet transform under L02
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centralized sub-image, which is with the same sizes of the four grids in Local4. In the
Local9, the original image is partitioned into 3×3 equal sized grids. Figure 4a, b and c show
the local hierarchical wavelet packet transform of the texture descriptors of Local4 at
decomposition level: L00, 1 and 2 respectively. Similar to the global HWVP descriptors,
the mean and standard deviation of each sub-band of the grids are collected for texture
representation. Hence, in a specified decomposition level L, the dimensions of Local4,
Local5 and Local9 are 4, 5, and 9 times of the corresponding global texture descriptors.

4 Applications of HWVP descriptors in scene categorization and semantic concept
retrieval

In order to show the effectiveness of the proposed HWVP descriptors (including WVPK,
NoDC, HIGH and HWVP), two kind of similarity measurement approaches are utilized in
this paper. The first approach is based the feature similarity measurement [24]. This method
is used for evaluating the impacts of decomposition levels, wavelet bases, and local/global
patterns on HWVP descriptors. The second approach is SVM based scene categorization and
semantic concept retrieval. This approach aims at making objective comparisons for HWVP
descriptors with PHOG, SPM and GIST.

4.1 Feature similarity based scene categorization

This method consists of following two steps: 1) feature centroids determination for each
category by training samples; 2) the category of a given test image determination according
to the distances of the feature to the centroids of the categories.

Let X k
i denote the corresponding texture feature of the i-th image of the k-th category and

X k denote the feature centroid of a category obtained by N (N≥1) training images per
category as follow

Table 1 Descriptions for different hierarchical wavelet packet descriptors WVPK, NoDC, HIGH and HWVP
under decomposition level L01, L02, L03, and L04

L01 L02 L03 L04 Descriptions of texture descriptors

WVPK 8 32 128 512 XWVPKðLÞ ¼ μL
1 ;σ

L
1 ; � � � ;μL

4l ;σ
L
4l

� �
NoDC 6 30 126 510 XNoDCðLÞ ¼ μL

2 ;σ
L
2 ; � � � ;μL

4l ; σ
L
4l

� �
HIGH 6 36 162 672 XHIGH(L) 0 (XNoDC(1); ⋯; XNoDC(L))

HWVP 10 42 170 682 XHWVP(L) 0 (XWVPK(0); ⋯; XWVPK(L))

(a) Global (b) Local4 (c) Local5 (d) Local9

Fig. 3 HWVP under different partitioning patterns. a Global (with no partitioning). b Local4 with 2×2 grids.
c Local5 with four grids of Local4 and a centralized sub-image. d Local9 with 3×3 grids
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X k ¼ 1
N

PN
i¼1

X k
i ; k ¼ 1; � � � ;K ð10Þ

where K is category number. Each element X k
i ðjÞ j ¼ 1; � � � ; dð Þ is normalized as

follows

(a) L=0

(b) L=1

(c) L=2

Fig. 4 Local hierarchical wavelet packet transform for the sub-images of Local4 under decomposition level
L00, 1, and 2
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X k
i ðjÞ ¼ X k

i ðjÞ�MinX ðjÞ
MaxX ðjÞ�MinX ðjÞ ; i 2 I ð11Þ

MaxX ðjÞ ¼ max
k¼1;���;K;i2I

X k
i ðjÞ

� 	 ð12Þ

MinX ðjÞ ¼ min
k¼1;���;K;i2I

X k
i ðjÞ

� 	 ð13Þ

where I is the set of all images, d is the dimension of X k
i . For a given testing image with its

feature X, we classify it into the k0-th category according to the minimum distance as follow

k0 ¼ argmin
k

Dist X ;X k
� �

ð14Þ

where Dist X ;X k
� �

is the distance of X and X k . In this paper, the Euclidean distance is
utilized which is calculated as follow

Dist X ;X k
� �

¼ 1

d

Xd
j¼1

X ðjÞ � X kðjÞ
� �2

ð15Þ

4.2 SVM based scene categorization and semantic concept retrieval

Scene categorization is to assign each test image to one of the pre-defined categories. In the
SVM based scene categorization and semantic concept retrieval, we systematically compare
the performances of SPM [16], PHOG [2], GIST [34] and HWVP descriptors. A brief
description for the four features is shown in Table 2. The four features are all with high
dimensions and all of them using the global features while catching some local information.
For an M class scene classification problem accurate classification is done by using M one-
versus-all SVM classifiers [7]. The kernel of the SVM is radical basis function (RBF). The

Table 2 Descriptions of PHOG, SPM, GIST and HWVP descriptors utilized in scene categorization and
semantic concept retrieval

Features Dimension Description

PHOG 850 In extraction of PHOG, local shape is represented by a histogram of edge orientations
which are quantized into K bins. The final PHOG descriptor for the image is a
concatenation of all the HOG vectors over each grid. The PHOG descriptor of the
entire image at level S is a vector with its dimension K � PS

s¼0 4
s

� �
. In this paper

we set the level S03 and K010, then the histogram is a vector with 850 bins [2].

SPM 6300 In extraction of SPM feature, local appearance features are quantized into V visual
vocabularies. Then visual vocabulary histogram in spatial pyramid domain is
constructed. In this paper, we set the spatial pyramid level P02 and V0300, thus the
dimension of SPM is 6300 [16].

GIST 640 In extraction of GIST feature, 8 orientations and 5 scales are utilized. Finally, the
magnitude of each filter is utilized for feature representation. Thus the dimension of
GIST [34] of a gray-level image is 5×8×160640. For a color image, the dimension
640×301920.

HWVP 850 The proposed HWVP under decomposition level l03 and the partition pattern is
Local5. The wavelet packet bases are db5.
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parameters of SVM are learned adaptively by using R-fold cross-validation. Firstly, ran-
domly selected (R-1) folds are used for model training and the left one fold is used for
testing. Then the optimal parameters obtained by cross-validation are used as the parameters
of RBF kernel for the training of the SVM classifiers. In this paper, R is set to be 5.

In scene categorization, the label of a test image is assigned as the label k0 under the input
feature X as follow.

k0 ¼ arg max
k¼1;���;M

fkðX Þ ð16Þ

where fk(X) is the response of the k-th one-versus-all SVM which is calculated as follow

fkðX Þ ¼
XNk

i¼1

ai
ky

i
kK X ; Sik ;σk

� �þ bk ; k ¼ 1; � � � ;M ð17Þ

where aik , yik , Sik , and bk are the parameters of the k-th one-versus-all SVM. Nk is the
support vector number of the k-th SVM. Sik is the i-th (i01,⋯, Nk) support vector of the k-th
SVM (k01, ⋯, M). yik , a

i
k , and bk are the label index, weight and bias of the i-th support

vector of the k-th SVM. The parameters of the SVM classifiers are trained using the images
of the k-th category as positive samples and the images from the other M-1 categories as
negative samples. The kernel function K(X, Y, σk) of the k-th SVM is as follows

K X ; Y ;σkð Þ ¼ exp � X � Yk k2= 2σ2
k

� �� �
; k ¼ 1; � � � ;M ð18Þ

The SVM classifiers are with optimal parameters σk which are learned during cross
validation, Y is support vector, X is input feature. In the tasks of semantic concept retrieval,
we sort the images in descending order according to the responses to the SVM classifier of
the corresponding concepts. Then we can determine whether an image is belonging to the
concept or not. Different from the scene categorization, in scene retrieval an image can be
classified into many concepts.

5 Datasets

The proposed hierarchical wavelet packet descriptors are evaluated on four widely used
datasets:

1) Oliva and Torralba dataset (denoted OT) [22]. This dataset has 2,688 images with eight
categories: 360 coast, 328 forest, 374 mountain, 260 highway, 308 insidecity, 410
open country, 292 street, and 356 tallbuilding. Each image in this dataset are with the
same sizes 256×256.

2) Scene-13 dataset [18]. This dataset consists of the 2,688 images of the eight categories
of the OT dataset and another five categories with 1,071 images: 241 suburb, 174
bedroom, 151 kitchen, 289 living room, and 216 office. Totally there are 3,759 images
in this dataset.

3) Sport event dataset [17]. This dataset contains 1,579 images of eight Sport event
classes: 200 badminton, 137 bocce, 236 croquet, 182 polo, 194 rock climbing, 250
rowing, 190 sailing, and 190 snowboarding.

4) TRECVID 2007 sound and vision dataset for high level feature extraction task (we also
call it semantic concept retrieval in this paper) in 2009. Totally about 50 h development
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dataset is used for models training, and about 50 h are used for performance evaluation.
This test data is obtained from news magazine, science news, news reports, documenta-
ries, educational programs and archival videos. There are 20 concepts (high level
features) needed to be submitted for high level feature task, in 2009. The 20 concepts
are Classroom, Chair, Infant, Traffic intersection, Doorway, Airplane_flying, Per-
son-playing-a-musical-instrument, Bus, Person-playing-soccer, Cityscape, Person-
riding-a-bicycle, Telephone, Person-eating, Demonstration_Or_Protest, Hand,
People-dancing, Nighttime, Boat_Ship, Female-human-face-closeup, and Singing
respectively. More detailed definitions and descriptions of the concepts can be found
from the website of TRECVID 20091.

6 Experimental results and discussions

In this Section, scene categorization performances of SPM, PHOG, GIST and HWVP are
evaluated on the OT, Scene-13, and Sport Event datasets. The performances of HWVP are
also comparisons with some of the algorithms on these datasets are given. The object
categorization performances based on SVM classifiers are carried out [7]. We compare it
with the authors’ approaches using their own datasets [17, 18, 22]. Comparisons of the SPM,
PHOG, GIST and HWVP descriptors based semantic concept retrieval are evaluated on
TRECVID 2007 test dataset for the detection of 20 concepts in the high level feature
extraction task of TRECVID 2009.

6.1 Scene categorization performance evaluation for SPM, PHOG, GIST and HWVP

Scene categorization performances of SVM based method with N (N05, 10, 20, 30, 50)
training images per category on the OT, Scene-13, and Sport event datasets are compared for
the four features: SPM [16], PHOG [2], GIST [34] and HWVP which are shown in Table 3
respectively. The average recognition rates and their standard deviations of 10 runs are
provided. From Table 3, HWVP and GIST are effective than PHOG and SPM in scene
categorization. When the training samples per category is set to be N050, HWVP outper-
forms GIST, PHOG and SPM by 3.8 %, 15.6 % and 17.9 % respectively on Scene-13
dataset. For OT and Sport Event datasets, the performances of GIST and HWVP are very
close. They are better than the performances of SPM and PHOG.

Table 4 shows the performances of HWVP and the approaches in [17, 18, 22]. The
performance of HWVP is 83.1 % which is as good as that of the authors’ method in [22]
(with recognition rate 83.7 %) when the training image number per category is set to be 100.
The confusion matrix of HWVP is shown in Fig. 5. The categories forest, opencountry,
coast and mountain are very confusing during classification. We find that 10 %, 10 % and
5 % images of the opencountry are falsely classified into coast, forest and mountain.
Moreover 10 % and 4 % images of the category coast are missed classified into the
categories opencountry and mountain.

For the Sport Event dataset the performances of the authors’ is 73.4 % using 70 training
images per category. Our method achieves 73.6 % under the same testing conditions. The
corresponding confusion matrix of ours is shown in Fig. 6a. We find that bocce is with
lowest recognition rate 56 %. Some of the images in this class are falsely classified into the
other seven categories. The [52] outperforms ours for the three categories: badminton,

1 TRECVID 2009 Website: http://www-nlpir.nist.gov/projects/tv2009/tv9.hlf.for.eval.txt
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rockclimbing and snowboarding. Compared to [17], our method improves the recognition
rates of the most confusing three categories: bocce, croquet and polo by 4 %, 7 % and 16 %
respectively.

For the Scene-13 dataset, the average recognition rate of the authors’ approach is 65.2 %
when the training image number is set to be 100 per category [18]. Under the same conditions
our method achieves the mean recognition rate 78.9 %. The corresponding confusion matrix of
our approach is shown in Fig. 6b. The most confusing two categories in this dataset are
bedroom and livingroom. Their recognition rates of the proposed HWVP are 55 % and
57 % respectively. About 22 % missing classified images in the category bedroom are falsely
classified into livingroom. And about 16 % missing classified images in the category
livingroom are falsely classified into bedroom. From the datasets, we find that the
texture patterns of bedroom and livingroom are very close. So they are very
confusing during classification.

6.2 Semantic concept retrieval performances evaluation for SPM, PHOG, GIST and HWVP

In this section the semantic concept retrieval performances of SPM, PHOG, GIST and
HWVP are evaluated on TRECVID 2007 dataset [5]. For this dataset we used the most
representative key-frame of each video shot (43,616 key-frames). This data is also split into
three disjoint sets: 26,170 key-frames for SVM parameters’ training, 8,723 key-frames for
classifiers’ weights learning during decision fusion (this part is not utilized in this paper) and
8,723 for testing.

Table 3 Evaluation for SPM, PHOG, GIST and HWVP descriptors in scene categorization on OT, scene-13,
and sport event datasets. The training image number N is set to be 5, 10, 20, 30, and 50 per category. The
wavelet packet bases of the texture descriptors are db5. The texture descriptor is HWVP under Local5. The
decomposition level of HWVP is set to be 4

N05 N010 N020 N030 N050

OT dataset SPM 53.6±4.1 56.4±3.5 62.3±3.9 70.2±1 72.9±1.8

PHOG 54.9±3.1 59.4±3.1 65.7±2.4 69.7±1.4 72.7±0.9

GIST 56.3±3.1 64.5±2.5 72.1±2.3 75.8±1.6 77.0±0.8

HWVP 55.8±3.5 64.7±3.1 71.8±2.0 75.3±1.2 77.2±0.7

Scene-13 dataset SPM 40.7±3.1 46.8±2.8 50.9±2.6 53.2±2.3 55.3±1.7

PHOG 41.1±2.1 48.6±1.5 53.2±1.2 55.3±1.2 57.6±1.1

GIST 47.6±2.7 57.4±1.9 62.3±2.2 67.9±1.9 69.4±1.3

HWVP 48.2±2.5 59.8±2.0 64.6±1.8 69.7±1.6 73.2±1.1

Sport event dataset SPM 42.6±3.1 48.0±3.3 52.3±2.4 55.1±2.3 57.6±2.1

PHOG 44.1±3.6 54.7±4.4 55.6±2.5 57.8±2.4 59.4±2.2

GIST 45.2±3.1 56.8±4.0 64.1±2.1 67.4±2.2 68.9±2.3

HWVP 45.6±2.8 56.2±3.3 64.3±2.1 67.6±1.9 69.3±1.8

Table 4 Comparisons for HWVP
and the approaches [17, 18, 22] for
scene categorization

Dataset N Ref. HWVP

OT 100 83.7 [22] 83.1

Scene-13 100 65.2 [18] 78.9

Sport event 70 73.4 [17] 73.6
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The average precision is utilized to evaluate the scene retrieval performances. In this
paper the precision is the number of relevant documents retrieved divided by the total
number retrieved. Average precision (AP) is defined as follow

AP ¼
PC

r¼1 PðrÞ � RðrÞð Þ
RV

ð19Þ

where r is the rank, C is the number of retrieved video shots. RV is total number of retrieved
video shots. R(r) is a binary function on the relevance of a document at the given rank r, and
P(r) is precision at the given rank r. The mean average precision (MAP) is used for the
evaluation of the M (M020) concepts on the TRECVID 2007 dataset, which is expressed as
follow

MAP ¼ 1

M

XM
i¼1

APi; i ¼ 1; � � � ;M ð20Þ

where APi is the average precision for the i-th categories.
The corresponding definitions of the four features are shown in Table 2. For each concept,

2,000 shots are returned according to the rank of the responses. The MAP values of SPM,
PHOG, GIST and HWVP for the 20 concepts are 7.28 %, 7.54 %, 8.20 % and 8.87 %
respectively as listed in Table 5. HWVP achieves best MAP values for the eight classes:
Classroom (#1), Infant (#3), Doorway (#5), Airplane_flying(#6), Bus(#8), Cityscape
(#10), Telephone(#12), and Nighttime (#17). Its performances for the other 12 concepts
are also satisfactory. We find that the four descriptors have high compensations for semantic

Table 5 AP and MAP values (%)
of the 20 concepts of TRECVID
2009 high level feature extraction
task for the features PHOG, SPM,
GIST and HWVP on TRECVID
2007 test dataset

Concept # SPM PHOG GIST HWVP

Classroom #1 0.73 0.38 1.14 1.17

Chair #2 7.52 12.65 8.84 9.32

Infant #3 1.87 0.40 2.02 4.49

Traffic-intersection #4 18.93 28.07 9.87 22.03

Doorway #5 2.01 1.84 0.79 2.69

Airplane_flying #6 1.66 1.32 1.55 2.52

musical-instrument #7 22.52 19.83 28.46 27.63

Bus #8 0.28 0.06 0.06 0.31

Person-playing-soccer #9 4.26 0.9 3.61 1.9

Cityscape #10 3.06 3.4 2.92 4.62

Person-riding-a-bicycle #11 12.62 18.84 16.35 14.01

Telephone #12 0.80 0.49 2.26 2.65

Person-eating #13 21.59 23.83 23.68 22.89

Demonstration_or_protest #14 5.94 1.7 6.16 3.84

Hand #15 5.36 4.86 7.70 5.23

People-dancing #16 2.97 1.38 2.85 2.23

Nighttime #17 1.56 1.91 1.74 9.47

Boat_ship #18 12.33 15.02 11.45 12.44

Female-human-face-closeup #19 8.29 6.32 11.79 11.59

Singing #20 11.23 7.53 20.85 16.28

MAP of the 20 concepts 7.28 7.54 8.20 8.87
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concept retrieval. Thus the final concept retrieval performances can be improved by fusing
the descriptors using Adaboost algorithms [10, 25].

6.3 Impacts of wavelet packet bases on HWVP descriptors

Different wavelet packet bases may influence the object category performances. In this
Section, we discuss the impacts of different wavelet bases to the performances of the HWVP
based scene categorization performances on Scene-13 and Sport event datasets. Perform-
ances of HWVP descriptors under the Daubechies wavelet bases db1-db10 are compared as
shown in Fig. 7. The average recognition rates of HIGH under 10, 20, 30, 40, 50, 60, and 70
training images per category are given. The performances of HWVP descriptors under
wavelet bases db1 and db2 are comparatively better than the others. This is due to the fact
that the wavelet packet transform with short length filters is good at keeping local texture
patterns. As we know that wavelet packet transform with long length filters take more spatial
information, thus the local structures are weakened in feature extraction. Performances of
WVPK, NoDC, HIGH and HWVP under decomposition level L04 with 50 training images
per category on Scene-13 and Sport event datasets are shown in Fig. 8a and b respectively.
From Figs. 7 and 8, it is obvious that better performances are achieved by the HWVP
descriptors under wavelet packet bases db1 and db2.

Fig. 7 Recognition rates of the texture descriptor HIGH under the wavelet packet bases db1-db10 with
decomposition level L04 on (a) Scene-13 and (b) Sport event datasets

Fig. 8 Object categorization performance of WVPK, NoDC, HIGH and HWVP under Global with decom-
position level L04 with 50 training images per category on (a) Scene-13 dataset; (b) Sport event dataset
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6.4 Impacts of decomposition level L on HWVP descriptors

In order to give some guidance to select the appropriate texture descriptors, we
compare WVPK, NoDC, HIGH and HWVP under different training images and
decomposition level L. The average recognition rates of WVPK, NoDC, HIGH and
HWVP on OT dataset with N (N01, 5, 10, 15, 20, 25 and 30) training images per
category are shown in Fig. 9a.

Figure 9b shows the comparisons of HWVP under Global and Local5 with various
decomposition levels L (L01, 2, 3, and 4) and training image numbers N (N01, 5, 10, 15,
20, 25, and 30) per category on Scene-13 dataset. We find that with the increment of
decomposition level L, the scene categorization performances of the descriptors are im-
proved. From L01 to L02, the average recognition rate improves by about 5 %. However,
the improvement from L02 to L03 is about 3 % in average. The improvements of L03 to
L04 are very small for Global. In our opinion, this is caused by the fact that the responses of
the image to the subtle sub-band filters are very weak when the decomposition level is more
than three. In this case the average energy and standard deviations are too small for the
details to provide discriminative power. Thus, the contributions of those sub-bands are
comparatively limited. From this point of view, L04 is enough for both global and local
HWVP descriptors.

From Figs. 8 and 9, we find that HIGH outperforms WVPK, NoDC and HWVP.
This is the reason that only the texture information of details is utilized in HIGH. It
is robust to luminance variations. This can be revealed by the fact that he perform-
ances of NoDC are better than these of WVPK. This also shows the fact that details
of any other decomposition level have positive contributions to object categorization.
HIGH and NoDC are both using the details of wavelet packets. Performances of
HIGH are better than those of NoDC. This further shows the effectiveness of feature
representation in hierarchical multi-resolution domain. Due to the fact that the de-
scriptor HWVP uses the approximations of all the resolutions during hierarchical
wavelet packet transform, the impact of luminance variations to HWVP is larger than
that of WVPK. This makes the scene categorization performances of WVPK better
than these of HWVP under the same conditions.

Fig. 9 a Comparison for HWVP, NoDC, WVPK and HIGH on OT dataset under Global and Local5 patterns
with wavelet packet bases db5. b Comparisons of HWVP under Global and Local5 with wavelet packet bases
db5 under various decomposition levels on Scene-13
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6.5 Impacts of local and global patterns on HWVP descriptors

In this section, the impacts of local and global patterns to HWVP descriptors on scene
categorization performance are discussed. Table 6 shows the detailed comparison on Scene-
13 dataset with 15 training images per category where the performances of Global, Local4,
Local5, and Local9 are compared. The details of hierarchical wavelet packet give more
positive contribution than approximations for object categorization. Thus, performances of
NoDC and HIGH are better than those of HWVP and WVPK. In general the performances
of proposed texture descriptors under Local4, Local5 and Local9 are better than that of
Global. This shows the fact that the roles of local patterns are enhanced by using localized
hierarchical wavelet packet transform. For the texture descriptors NoDC and HIGH, the
performances of Local9 are higher than those of Local4 and lower than those of Local5. This
is due to the fact that salient texture characters are broken with subtle partitioning.

7 Conclusions

In this paper, effective texture descriptors based on hierarchical wavelet packet transform are
proposed. Systematical comparisons are made with PHOG, SPM and GIST features in the
applications of scene categorization and semantic concept retrieval on widely used OT,
Scene-13, Sport event, and TRECVID 2007 datasets. The HWVP descriptors achieve better
performances, and they have good compensations to the other descriptors for semantic
concept retrieval.

Scene categorization can be benefited from the texture information of the sub-
bands of hierarchical wavelet packet transform. Four hierarchical wavelet packet
descriptors are evaluated. Details of hierarchical wavelet packet sub-bands provide
positive contribution for feature representation. The wavelet packet bases have signif-
icant impacts of the HWVP descriptors, with the increase of decomposition level,
HWVP based scene categorization performance improved. HWVP descriptors with
four decomposition levels are enough for both their computational costs and discrim-
ination powers. HWVP descriptors under wavelet packet bases with short lengths
achieve better performances than the descriptors under filters with long length. Local
texture patterns are blurred when using long length wavelet packet bases. The
discriminative powers of HWVP descriptors with long length filters are larger than
those of the descriptors with short length. HWVP descriptors extracted from the local
images can improve the feature discrimination power. However, it is important that
partitioning images into many grids may break the salient texture patterns.
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